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CHAPTER 1
INTRODUCTION

The Gulf of Mexico Wet Test exercise was conducted on 27 April 1979 in the
area of the Mexican Basin shown in Fig. 1-1. The primary objective of the exercise
was an engineering test of the Acoustic Data Capsule (ACODAC) system's ability
to monitor ambient noise. In addition, signals from a series of SUS were recorded.
The purpose of that series was to obtain information about the geoacoustic
properties of the bottom in the region. The SUS source track, shown in Fig.1-1,

was a north-to-south line approximately 45 km long.

This region of the Gulf where the test was conducted has a relatively level,
smooth bottom with a very thick sediment (1000 m thick). Geoacoustic properties
of the bottom in the region as derived from available literature are presented in
Chapter 2. The sound speed profile is illustrated in Figs. 1-2. Due to the bottom
limited characteristic of the region, acoustic propagaticn from sources at a depth
of 91 m is mainly via paths that reflect from and refract through the bottom.
Thus, a thorough analysis of acoustic propagation in the area requires the

quantification of the bottom sediment acoustic parameters.

The ACODAC system consisted of 12 hydrophones ranging in depth from 3200
to 530 m. The ocecan depth in the exercise rogion is approximately 3400 m. The
SUS were detonated at depths of 91 and 244 m. Due to the svstem electronic
setup, only the hydrophone at 2290 m recorded data of sufficient quality to derive
propagation loss. There were, however, sufficieni data to adequately describe

acoustic propagation in the test region.

The analysis was begun using the ARL:UT multipath processing rystem
detailed in Ref. 1. The bottom loss versus battom angle data described in Chapter

3 are the main data products of this system. Chapter 4 explains the bottom loss
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results in terms of ocean bottom (geoacoustic) models. These geoacoustic models
predict signal paths and attenuation using sediment sound speed and density

gradients, and the ratio of the compressiocnal wave velocities in the sediment and

water at the water-sediment interface. The first two parameters are obtained

from geological survey data, presented in Chapter 2, and the ratio was derived
from the measured bottom loss data, explained in Chapter 3. The final analytical

step compares the measured bottom losses to those ohbtained from the modeling.

The measurements show the bottom loss to be quite low in the test region.
For example, at 32.5° grazing angle, a mean per bounce loss of 2.0 dB occurred at
50 Hz and 4.1 dB at 250 Hz. Botton losses calculated from the peoacoustic model
match quite well with measured data. Thus, a geoacoustic model of the test region

has been determined and can accurately predict bottom interactions.
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CHAPTER 2
GEOACOUSTIC DATA FOR THE WESTERN GULF OF MEXICO

The data discussed in this repcrt were recorded at a site in thr wulf of
Mexico near the boundary of two depositional regions: the Lower Mis-.3sippi Fan
and the Western Gulf. Figure 2-1 shows the Deep Sea Drilling Proj: - : (DSDP) sites
in the axea,z’3 and an approximate delineation of depositional regions. Of
particular interest in this study are DSDP holes 90, 91, and 9Z, all near the test

area.

Figures 2-. - 2-4 give information on the DSDP holes. Lithologically, the
most significant differences among the DSDP sites are the predeminance of pelagic
sediment in the first 500 m at hole 90, the presence of sand in the upper 500 m at
hole 91, and the shailowness at which claystone occurs at hole 92. The
predominance of carbonate ooze in the first few hundred meters at hole 90 is due
to a failure of turbidity currerts from the east to reach this area, while the upper
180 m of sediment at hole 91 is due primarily to turbidity currents tfrom the
Mississippi Fan. The deeper sediments at both holes 90 and 91 appear to be
turbidites derived primarily from the north, northwest, and west. However, as
shown in Fig. 2-2, sediments down to 500 m are coarser grained at hole 91 than at

hole 90 ang, in particular, sand is reported at hele 21 but rot reported at hole 0.

Hole 92 was drilled on a scarp formed presumably by a salt diapir. The
sediments at this site are much more conzolidated than sediments at comparable
depths on the bathymetrically lower rise area. The greater consolidation suggests
that either the sediments at this hole have had a greater denth of burial in the

past, or sait diffusion facilitated consolidation.

Figure 2-3 shows the density profiles measured by the DSDP at these sites.

These density profilas reflect the lithological differences discussed previcusly. The
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densities of the turbidites at hole 91 due to the Mississippi Fan are greater and
show greater variation with depth than the pelagic sediments at hole 90. Also, the
density values of the three holes are largest at hole 92 where the sediments are

more consolidated.

Figure 2-4 shows the velocity profiles derived from the density profiles of
Fig. 2-3 using the velocity-density relationship of Hamilton.* The velocity-
density relationship for silt-clays and turbidites was calculated from Hamilton's

equation:
p = 10135 Vp - 0.190 .

Figure 2-4 shows the large difference between velocity measurements for
holes 90, 91, and 92. The gradient at hole 90 is approximately 1 secul; at hole 92 it
is about 2 sec-l, and at hole 91 it is between 1 sec“l and 2 sec—l. Assuming that
the experimental accuracy is the same at each site, one would expect, on the basis
of velocity gradients and density contrasts, that bottom loss would be lower at hole
91 than hole 90. This would result from the shorter path lengths at hole 91 due to
the higher sound speed gradient and the greater variance of instantaneous
impedance with depth., Larger gradients imply smaller radii of curvature of the
transmitted paths, and larger variations in impedance lead to more reflections.
The relative bottom loss at hole 92 cannot be readily compared to that of holes 90
or 91 since the relief and shape of the scarp at hole 92 will significantly affect

bottom loss at this site.

Figure 2-5 shows some velocity profiles found in the literature for the Gulf of
Mexico, which provide useful comparisons with those derived from DSDP data. The
solid curve is a composite profile derived at the Marine Science Institute (MS],
Galveston, Texas) from multichannel seismic data, shot primarily in the western

> The solid curve with circles is a profile derived by Gregcry6 in

part of the Gulf.
a similar region using the percentage of shale in the sediment column to estimate
velocity. Finally, the dashed curve was obtained by l\‘.atthews7 from a regression
of interval velocities for seismic data obtained in an area of the Gulf of Mexico
where the sediments are fine grained and highly consolidated due to rapid

deposition.

10
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Figure 2-6 shows how these profiles compare with the DSDP data. The MSI
composite profile agrees very well with the DSDP data at hole 90 down to about
500 m (Fig. 2-6(a)). Below this depth, it is assumed that disturbance of the sample

accounts for the unrealistically low DSDP velocities.

Figure 2-6(c) shows that the MSI profile does not agree with the DS:JP data
at hole 92 and that the Matthews profile underestimates the reported velocity at
this site. This is believed due to the anomalously high consolidation of the

sediments on the scarp at this site.

Finally, the DSDP measurements at hole 91, shown in Fig. 2-6(b), cannot be
matched with the profiles shown in Fig. 2-5. The MSI and Gregory profiles coincide
with some of the DSDP data at depths between 100 and 200 m and approximately
agree with data points at about 400-500 m, but there is a distinct trend in the data
toward sound speeds higher than sound speeds indicated by these profiles. The
preliminary explanation of these higher sound speeds is that they are due to a
higher coarse grain fraction (in particular sand) at this site than at hole 90. As
seen in Fig. 2-2, the lithology at hole 90 is clay and silty clay to a depth of 500 m,
whereas the lithology at hole 92 is silty clay, silty sand, and sand. Thus, a
reasonable interpretation of the velocities at hole 91 would be a trend similar to
that at hole 90 corresponding to the fine grain fraction, superimposed on a
discontinuous profile with higher velocities corresponding to sediments with a

considerable fraction of sand.

This explanation supports categorization of the Gulf of Mexico into two
depositional regions: the Western Gulf, which is characterized by DSDP hole 90 and
the MSI velocity profile, and the lower Mississippi Fan, which represents deposition
of sediments with a higher coarse grain fraction. DSDP hole 91 seems to be in an

overlap area of the two regions.
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The acoustical measurements discussed in this report appear to be in the zone
of overlap of these two depositional regions. However, in the absence of other
data, the velocity estimate obtained from the MSI composite profile was used in
the acoustic analysis. This curve fits the DSDP data at hole 90 very well and
appears to be a significant component of the overall velocity profile at hole 91.
The sound speeds indicated by the Matthew's profile and DSDP data at hole 92 are
probably not applicable to the acoustical measurements discussed in this report,

although they are probably suitable for some regions of the Gulf.

Table 2-1 shows sound speeds and densities versus depth obtained from the
MSI velocity profile. Densities were computed using the MSI velocity profile and
the velocity-density relationships of Hamilton. Note that this sound speed profile
shows a slightly "fast" bottom, with a sediment-water speed ratio of
1538/1530 = 1.005. From the analysis of the acoustic bottom interaction data, it
was concluded that the ratio should be 1516/1524 = 0.995 (Table 4-1).
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Depth

{m)

0+
100
200
300
400
500
1000

TABLE 2-1

VELOCITY AND DENSITY PROLILES

MSI Density*
1530 1.0

1538 1.57
1633 1.68
1729 1.78
1824 1.89
1920 1.99
2015 2.10
231 2.23

*Calculated from MSI velocity profile using Hamilton's velocity-density

relationahips.4
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CHAPTER 3
BOTTOM LOSS DATA

The processing procedure used te derive the bottom loss data is described in
Ref. 1 and consists of three main steps. First, the total propagation loss for each
multipath arrival is determined by comparing received energy in the pulse to the
standard source level for the SUS. Next, using a coherence ray theory model and
assuming a perfectly reflecting bottom, a reference lnss for each arrival is
calculated. The bottom loss calculated for each arrival is then assumed to be the
difference between the reference and measured losses. Measurements are made in

standard 1/3 octave bands from 25 Hz to 300 Hz.

The reduced data consisted of 48 SUS detonated at 91 m depth and 47 SUS at

244 m depth. The data used were recorded from a receiver at 2290 m depth.

The bottom loss data were limited to frequencies of 300 Hz or less, the
bandwidth of the ACODAC. Exercise geometry restricted the bottom graziry
argles of usable signal arrivals to between 7° and 38% Short range SUS produced
arrivals with grazing angles greater than 38°, but these saturated the receiver.
The exercise conditions resulted in a problem for arrivals with low grazing angles
(7° or less). The receiver was approximately 1110 m above the bottom. The sound
speed profile (Figs. 1-2) indicates that bottom refraction can occur for sources
deeper than 60 m; these paths also refract at the surface. The 244 m sources have
more rays which refract rather than bounce from the surface than the 91 m shots.
As a result, for 25 of the 244 m shots, bottom refracted arrivals were received
within 0 to 150 msec prior to bottom bounce arrivals. These could not be time
resolved, and contaminated bottom loss data below 14°. This situation occurred
only four times for the 91 m shots and then disturbed data for bottom angles of less

than 7°. Had the receiver been farther from the bottom, this problem would have

been lessened.

17
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Figures 3-1 - 3-5 are the per bounce bottom loss curves of five frequencies
for the 244 m source. Figures 3-6 - 3-9 contain similar data for the 91 m sources.
In these figures, each plotted symbol represents a bottom loss measurement from a
single arrival. The plotted number denotes the number of bottom reflections of
that arrival.

At 25 Hz and 50 Hz for the 91 m SUS and at 25 Hz for the 244 m SUS, the
curves show complex behavior and have negative values over some angular
intervals, Those are artifacts that arise from a combination of the acoustic
surface interference effect ("Lloyd's mirror effect") and inaccurate source naviga-
tion.1 Research is currently underway to circumvent this problem by estimating
arrival angles from the data rather than from calculations based on navigation.8
These low frequency bottom loss data can be interpreted as meaning that the loss
is very low; actual values must be estimated from the higher frequency data, as

will be done in Chapter 4.

Curves illustrating the per bounce bottom loss averaged over consecutive 5°
bins are presented in Figs. 3-10 (91 m), 3-11 (244 m), and 3-12 (both sources). Note
that the bottom loss scale is expanded. Because of the measurement artifact
problems, the 25 Hz and 50 Hz data for the 8l m SUS and the 25 Hz data for the
244 m SUS are excluded. Comparing data from the two source depths {Figs. 3-10

and 3-11), one sees a close agreement of the estimates.
For both sources, bottom loss increases with frequency and bottom grazing

angle. Mean bottom loss per bounce ranged from near 1 dB at 7° to approximately
2.5 dB at 38° for 50 Hz. Losses at 250 Hz rose from 4 dB at 7° to 5.7 dB at 38°,

18
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CHAPTER 4
GEOACOUSTIC MODEL OF WET TEST EXERCISE REGION

The second analysis objective was to determine how well the bottom loss
measurements could be duplicated by theoretical models. This bottom interaction
modeling is based on geoacoustical structure of the ocean bottom, in particular,
that constructed by Hamilton.9 The model describes the bottom as a multilayered,
fluid sediment on top of a solid, non-layered basement. Each layer is defined by a
depth function of the geoaccustic parameters. This framework was used by
Mitchell and Lemmonlo to develop a ray theory model of acoustic interaction with
the ocean bottom. The following analysis is based upon this model. The
parameters consist of the velocity and density profiles, attenuation profile, and the
ratio of the sediment-to-water sound speeds (cs/cw) at the water-sediment

interface.

As described in Chapter 2, an initial sound speed profile was obtained from
analysis of archival data. Density data were derived from the velocity using
Hamilton's density-velocity x-elationships.4 Then, an iterative series of bottom loss
calculations and comparisons with data, followed by modifications to the
geoacoustic model, were conducted. The objective here was to refine the cs/c“

2

ratio and to determine the attenuation profile.

The cs/c w ratio was determined from the measured bottom loss data. This
parameter strongly affects bottom loss at low grazing angles. Therefore, prelimi-
nary modeling results were compared to the measured loss to determine the best
ratio. The value of 0.995 was selected and the velocity gradients, given in Chapter

2, were then used to calculate the velocity profile shown in Table 4-1.

To obtain the attenuation profile, the inversion technique of Ref. 9 was used.

The resulting profile is shown in Fig. ¢4-1, and is tabulated in Table 4-1. Also shown

31
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TABLE 4-1
GEOACOUSTIC PARAMETERS FOR THE SEDIMENT IN THE
WET TEST EXERCISE AREA
Compressional
Wave
r : Depth Velocity Attenuation Densitg
1] {m) {(m/sec) (dB/m-kHz)  (g/cm)’
Bottom Water 1524 1.04
_ Sediment 0 1516 0.033 1.57
X 50 1563 0.015 1.63
100 1611 0.008 1.69
200 1706 0.008 1.78
300 1801 0.010 1.89
400 1896 0.012 1.9
500 1991 (0.012)* (2.10)*
5 1000 2327 (0.012)* (2.23)*

*Values in parenthesis were extrapolated.
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in Fig. 4-1 is the attenuation profile derived for thick sediment regions of the
Northwest Indian Ocea.u.11 The attenuation data from the Mexican Basin Wet Test
site closely match those labeled "M" (medium) from the Indian Ocean. As reported
in Ref, 11, that region is known to have a silty clay bottom of terrigeneous origin
with turbidite layering. A similar structure should be expected for the Wet Test

region as discussed in Chapter 2.

Figures 4-2 - 4~6 compare the calculated and combined measured bottom
loss. The figures illustrate very good agreement. Both measured and calculated
values are averaged over 1/3 octave bands, Table 4-2 contains the calculated

bottom losses for five frequencies and for grazing angles from 8° to 36°.

This close match is important, as it allows extrapolations to the frequency

and angle limits imposed by the measurement system.
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TABLE 4-2
BOTTOM LOSSES CALCULATED BY A GEOACOUSTIC MODEL OF
THE MEXICAN BASIN OF THE GULF OF MEXICO

Bottom Loss
{dB)
Frequency
(Hz)
Grazing Angle 50 100 160 200 250
(deg)
8 0.5 11 2.2 3.1 3.5
12 0.6 1.5 1.9 3.2 2.8
16 0.7 1.3 2.1 2.6 3.1
20 0.8 1.3 2.1 2.5 3.2
24 0.7 1.3 2.1 2.8 3.6
28 0.8 1.7 2.8 3.4 4.1
32 1.0 2.2 3.6 4.4 4.9
36 13 2.9 4.4 4.6 6.8
§-_
L
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